X-Warehousing: an XML-Based Approach for
Warehousing Complex Data

Omar Boussaid’, Riadh Ben Messaoud?, Rémy Choquet’, Stéphane Anthoard?
bomar.boussaid@univ—lyon?.fr, Irbenmessaoud@eric.univ—lyonQ.fr,
f{remy.choquet|stephanea}@gmail.com

Laboratory ERIC - University of Lyon 2
5 avenue Pierre Mendés-France
69676, Bron Cedex — France
http:/ /eric.univ-lyon2.fr

Abstract. XML is suitable for structuring complex data coming from
different sources and supported by heterogeneous formats. It allows a
flexible formalism capable to represent and store all types of data. There-
fore, the importance of integrating XML documents in data warehouses
is becoming increasingly high. We propose an XML-based methodology,
called X-Warehousing, which designs warehouses at a logical level, and
feeds them with XML documents at a physical level. Our approach is
mainly oriented to users analysis objectives expressed according to an
XML Schema and merged with XML data sources. The resulted XML
Schema represents the logical model of a data warehouse. Whereas, XML
documents validated against the analysis objectives define the physical
model of the data warehouse, called the XML cube.

1 Introduction

With the recent popularity of Internet and new ways of communication, enter-
prises are collecting huge amount of heterogeneous data. These data are quite
complex since they concern different types of information, coming from different
sources, and presented on different supports. For instance, in medicine, a case
study of a patient may contain general information about the patient (age, sexe,
etc.) as well as scanned images, recorded interviews and expert’s annotations.
Since enterprises aim at integrating these data in their Decision Support Systems
(DSS), some efforts are needed to structure them and to make them homoge-
neous as well as possible. The XML (eXtensible Markup Language) formalism
has emerged as a dominant W3C! standard in describing and exchanging data
among heterogeneous data sources in a semi-structured way. Its self-describing
hierarchical structure enables a manipulative power to accommodate complex,
disconnected, and heterogeneous data. Further, XML documents may be val-
idated against an XML Schema. It allows to describe the structure of a doc-
ument and to constraint its contents. Nowadays, in most organizations, XML

! http://www.w3.org

documents are becoming a usual way to represent and to store data. There-
fore, new efforts are needed to integrate XML in classical business applications.
Feeding data warehouses with XML documents is also becoming a challenging
issue since we know that multidimensional organization [1] of data is quite dif-
ferent from semi-structured organization. The difficulty consists in carrying out
a multidimensional design within a semi-structured formalism like XML.

In this paper, we propose an XML based approach, called X-Warehousing,
to warehouse complex data. We include a methodology that enables the use of
XML as a logical modelling formalism of data warehouses. This methodology
starts from analysis objectives defined by users according to a multidimensional
conceptual model (MCM). We use MCM in order to easily represent multidi-
mensional structures of a data warehouse through what users can express future
analysis objectives at a conceptual level. The data warehouse is then modelled
at a logical level with an XML Schemas, which defines a reference data cube
model. Our approach is also able to feed the designed data warehouse with XML
documents that reflect the latter analysis needs over complex data. In fact, the
reference data cube model is matched with complex data presented under XML
documents. Note that, we focus on analysis needs rather then data themselves.
In order to match the reference model with XML documents, they are both
presented by XML Schemas. Then, we transform them into attribute trees [2]
to make them comparable. Therefore, these attribute trees will be merged ac-
cording to a fusion function by pruning and grafting [3]. Finally, our approach
outputs XML documents valid as well as possible against the reference cube
model. Each output XML document respects the user constraints required on
its data content and represents a real OLAP (On-Line Analytical Processing)
fact. The whole set of warehoused documents correspond to the physical model
of the data warehouse denoted XML Cube.

The rest of the paper is organized as follows. We dress a survey of related
work in Section 2. In Section 3 an overview and the context of our approach are
given. Section 4 provides a formal background needed for our X-Warehousing
proposal. Section 5 details how we build XML Cubes from initial XML sources.
We present in Section 6 a Java application we implemented. A case study on a
real complex data is illustrated in Section 7. Finally, we conclude and propose
future work in Section 8.

2 Related work

Some proposals regarded multidimensional modelling by using XML as a base
language for describing data warehouses. Krill [4] affirms that vendors such as
Microsoft, IBM, and Oracle will largely employ XML in their database systems
for interoperability between data warehouses and tool repositories. Nevertheless,
we distinguish two separate approaches in the field.

The first approach focuses on physical storage of XML documents in data
warehouses systems. XML feeds warehouses since it is considered an efficient
technology to support data within structures well suited for interoperability
and information exchange. Baril and Bellahséne introduced the View Model [5],

which is a method capable of querying XML databases. A data model is de-
fined for each view to organize semi-structured data. An XML warehouse, called
DAWAX (DAta WArehouse for XML), based on the View Model was also pro-
posed. In [6], Hiimmer et al. proposed an approach, called XCube, to model
data cubes with XML. XCube consists of three kinds of XML Schemas: (1)
XCubeSchema to hold the multidimensional schema; (2) XCubeDimension to
describe hierarchical structure of the dimensions involved; and (3) XCubeFact
to describe facts. Nevertheless, this approach focuses on the exchange and the
transportation of data cubes over networks rather than multidimensional mod-
eling with XML.

The second approach aims at using XML to design data warehouses accord-
ing to classical multidimensional models such as star schemes and snow flake
schemes. XML-star schema [7] uses Document Type Definitions (DTDs) to ex-
plicit dimension hierarchies. A dimension is modelled as a sequence of DTDs that
are logically associated similarly as the referential integrity does in the relational
databases. Golfarelli et al. introduced a Dimensional Fact Model [8] represented
via Attribute Trees [2]. They also use XML Schemas to express multidimensional
models by including relationships with sub-elements. Nevertheless, Trujillo et al.
think that this approach focuses on the presentation of the multidimensional
XML rather than on the presentation of the structure of the MCM itself [9].
They claim that an Object Oriented (OO) standard model is rather needed to
cope all multidimensional modeling proprieties at both structural and dynamic
levels. Trujillo et al. provide a DTD model from which valid XML documents
are generated to represent multidimensional models at a conceptual level. Nas-
sis et al. propose a similar approach where OO is used to develop a conceptual
model for XML Document Warehouses (XDW) [10]. An XML repository, called
xFACT, is built by integrating OO concepts with XML Schemas. Nassis et al.
also define Virtual dimensions by using XML and UML package diagrams in
order to help the construction of hierarchical conceptual views.

The aim of our proposal is to cover the two previous approaches. The X-
Warehousing process is entirely based on XML: it designs warehouses with XML
Schemas at a logical level, and then feeds them with valid XML documents at a
physical level. Further, since it uses XML, our approach can also be considered a
real solution for warehousing heterogenous and complex data in order to prepare
them for future OLAP analysis.

3 Overview and context of our approach

Since we need to prepare XML documents to future OLAP analysis, storing
them in a data repository is not a sufficient solution. We rather need to express
through these documents a more interesting abstraction level completely ori-
ented to analysis objectives. X- Warehousing builds a collection of homogeneous
XML documents. Each document corresponds to an OLAP fact where the XML
formalism structures data according to a multidimensional model. In order to
do so, we propose to match and validate XML documents against a MCM (star
or snow flake schema) modelled via a reference XML Schema.

E >n) e[

(Logical model)

XML
Schema i),
it

71
' J J ! Input XML
: " 1 collection
Multidimensional : Attribute I Attribute I]
conceptual] Tree Tree :
del 1
mode| : N ¢ :
1
1
1
1
1
1
1
1
1
1
1
! | Output XML
: 1 collection
. XML Cube : (Physi
1
1
1
1
1

Fig. 1. Overview of the X-Warehousing approach

As presented in Figure 1, the X-Warehousing approach accepts a reference
MCM and XML documents in input. In fact, through the reference MCM a user
may design a data warehouse by defining facts, dimensions, and hierarchies.
This MCM reflects analysis objectives needed by the user. This model is then
transformed to a logical model via an XML Schema (XSD file). In a second
step, an attribute tree [2] is automatically generated from the previous XSD file.
Once the reference model is defined, we can submit XML documents to feed the
designed warehouse. XML Schemas and attribute trees are also extracted from
input XML documents. We transform the reference model and XML documents
into attribute trees in order to make them comparable. In fact, two attribute
trees can easily be merged together through fusion based on pruning and graft-
ing functions [3]. At this stage, two cases are possible: (1) if an input document
contains a minimum information required in the reference MCM, the document
is accepted and merged with the MCM. An instance of the XML documents is
created and validated against the resulted XML schema. This new XML Schema
represents the logical model of the final XML Cube; (2) else, if a submitted docu-
ment does not contain enough information to represent an OLAP fact according
to the reference MCM, the document will be rejected and no output is provided.
The goal of this condition is to obtain an homogeneous collection of data with
minimum information capable to feed the final XML Cube.

The interest of our approach is quite important since organizations are treat-
ing domains of complex applications. In these application, a special consideration
is given to the integration of heterogenous and complex information in DSS. For
example, in breast cancer researches, experts require efficient representations of
mammographic exams. Note that information about a mammogram come from
different sources like texts, experts annotations, and radio scanners. We think
that structuring such a set of heterogenous data within XML format is an inter-

esting solution for warehousing them. Nevertheless, this solution is not sufficient
for driving future analysis. We propose to structure these data in XML format
with respect to a multidimensional reference model of a data warehouse. Output
XML documents of the X-Warehousing process represent the physical model of
the data warehouse. Each output document corresponds to a multidimensional
structured information of an OLAP fact.

In the following, we base our study on a running example about the breast
cancer domain. A collection of input XML documents describing suspicious re-
gions of cancer tumors is already created from the Digital Database for Screening
Mammography? [11].

4 Formal background

In this section, we provide a formalization for our X-Warehousing approach.
We recall conceptual aspects of typical data warehouse models, i.e., star schema
and snow flake schema. Then, we propose a logical model of data warehouses
extracted from the conceptual model, and represented by both XML Schemas
and attribute trees [3].

4.1 Conceptual warehouse models

In general, the conceptual model of a data warehouse is a description of dimen-
sion and fact tables. star schema and snow flake schema are two main variants of
this approach. From a relational point of view, a star schema consists in one fact
table surrounded by independent r dimension tables, i.e., there is no particular
relations between dimension tables.

Definition 1. (Star schema)

Let D ={D;,1 < s <r} be a set of r independent dimension tables. Each table
D, has Ds.PK as a primary key. F is a fact table with d multi-part keys. A “star
schema” is defined by the couple (F,D) that satisfies the following conditions :

—vte{l,...,d}, it exists exactly one s € {1,...,r} such as F.K; = D;.PK;
— Vs e{l,...,r}, it exists one or many t € {1,...,d} such as F.K; = D;.PK.

According to the previous definition, each multi-part key from a fact table
is linked to exactly one dimension table. Whereas, a dimension can be linked
to one or many multi-part keys in the fact table. This situation can be encoun-
tered in many real world modeling problems. For instance, a Sale fact can be
characterized by an Origin Country and an Destination Country.

In OLAP analysis, we usually need more than a single granularity level of
information in one dimension. For example, to learn about the detailed Origin
of a Product, a multidimensional is supposed to cope information as well about
the State of the Product as its Country, its District, and its Office. In order to
do so, a dimension may be expressed through a multi-level hierarchy. From a

2 http://marathon.csee.usf.edu/Mammography /Database.html

Lesion_type Lesion_category
Assessment

- Lesion_type_id Lesion_category_id
:55655—’“97‘“‘1[‘ Lesion_category_id PJ_. Lesion_category_name
ssessment_code i
= icious_region Lesion_type_name
Subtlety Lesion_type_id Scanner_image

assessment_id

Subtlety_id Subtlety_id Scanner_id
Subtlety_code '_|—{ Patology_id Scanner_file_name
Scanner_id
Patient_id
Pathology Date_of_stud! Patient Age_class
Pathology_id Mm Patient_id Age_class_id
Pathology_name ggl_tlze_r,ld Patient_age Age_class_name
Region_length B Patient_age_class_id
Number_of_regions
Year Month Day
Year id Month_id Date id Digitizer
Year_name .-I'< Year_id ’—l'< Month_id » Digitizer_id
Month_name Day_name Digitizer_name

Fig. 2. Conceptual model of “Suspicious Region” data cube

conceptual point of view, a hierarchy with [levels is generally represented by a
set of [tables Dy,...,Dy,..., D;, where Vt € {2,...,1} the primary key D;.PK
of D, is an attribute (foreign key) in D;_;. In other terms, tables of a hierarchy
are linked by a semantic inclusion: Dy C --- C D;_y C Dy C --- C D;. For
example, one tuple from table Office is semantically included to another tuple
from table District. In the same way, a District is semantically included to a
Country, and so on. We assume that the primary key of a hierarchy corresponds
to the the primary key of its first table Dy, which represents the finest granularity
level of the dimension.

Definition 2. (Snow flake schema)

Let H = {H;,1 < s < r} be a set of r independent hierarchies. FEach hierarchy
H, has Hs.PK as a primary key. F is a fact table with d multi-part keys. A
“snow flake schema” is defined by the couple (F,’H) that satisfies the following
conditions:

—vte{l,...,d}, it exists exactly one s € {1,...,r} such as F.K; = H,.PK;
— Vse{l,...,r}, it exists one or many t € {1,...,d} such as F.K; = H,.PK.

A snow flake schema is quite similar to a star schema. It consists in one fact
table surrounded by a set of dimensions, where each dimension is represented by a
hierarchy instead of a single table. For example, the MCM of the Figure 2 displays
a data cube of suspicious regions (tumors detected on mammographic screens)
organized according to a snow flake schema. The conceptual representation of
data warehouses is a way through what users can easily define future analysis
objectives. We emphasize that the relational formalism as used here aims at
representing both multidimensional data structure and analysis objectives.

4.2 Modelling a warehouse with XML

An XML document consists in nested element structures, starting with a root
element. Each element can contain sub-elements and attributes. Both elements

and attributes are allowed to have values. Attributes are included, with their
respective values, within the element’s opening declaration (tag). Between an
opening and a closing tag of an element, any number of sub-elements can be
present. According to these properties, we propose to represent the above con-
ceptual models (star schema and snow flake schema) of data warehouses with
XML. More precisely, we use XML schemas to define the structure of a data
warehouse.

To write a star schema of a data warehouse within XML, we define the notion
of an XML star schema as follows:

Definition 3. (XML star schema)

Let (F,D) be a star schema, where F is a fact table having m measure attributes
{F.M;,1 <qg<m} andD ={D;,1 < s <r} isa set of r independent dimension
tables where each Dy contains a set of ng attributes {Ds.A;,1 < i < ng}. The
“XML star schema” of (F,D) is an XML schema where:

— F defines the XML root element in the XML schema;

- Vg e {l,...,m}, F.M, defines an XML attribute included in the the XML
root element;

— Vs € {1,...,r}, Dy defines as many XML sub-elements of the XML root
element as times it is linked to the fact table F;

—Vse{l,...,r} and Vi € {1,...,n,}, D,.A; defines an XML attribute in-
cluded in the XML element D,.

Knowing that the XML formalism allows to embed multi-level sub-elements
in one XML tag, we use this property to represent XML hierarchies of dimen-
sions. Let H = {D1,..., Dy, ..., D;} be a dimension hierarchy. We can represent
this hierarchy by writing D; as an XML element and V¢t € {2,...,l}, D; is
writing as an XML sub-elements of the XML element D;_;. The attributes of
each tables D; are defined as XML attributes included in the XML element D;.
Therefore, we can also define the notion of XML snow flake schema, which is
the XML equivalent of a conceptual snow flake schema:

Definition 4. (XML snow flake schema)

Let (F,H) be a star schema, where F is a fact table having m measure attributes
{FM;,1 < g <m} andH = {Hs,1 < s < r}ois a set of r independent
hierarchies. The “XML snow flake schema” of (F,H) is an XML schema where:

— F defines the XML root element in the XML schema;

- Vg e {l,...,m}, F.M, defines an XML attribute included in the the XML
root element;

— Vs e {l,...,r}, Hs defines as many XML dimension hierarchies, like sub-
elements of the XML root element, as times it is linked to the fact table
F;

Based on properties of XML formalism, XML Schemas enable to write a
logical model of a data warehouse from its conceptual model. Our approach
does not only use the XML formalism to design data warehouses (or data cubes),

but also feeds them with data. We use XML documents to support information
relative to the designed facts. As an XML document supports values of elements
and attributes, we assume that it contains information about a single OLAP
fact. We say that an XML document supports an XML fact when it is valid
against an XML star schema or an XML snow flake schema representing a
logical model of a warehouse. For instance, Figure 3 shows an example of an XML
fact associated to the conceptual model of the “Suspicious Region” data cube
presented in Figure 2. Note that at a physical level, the XML Cube, introduced
in the section 3, corresponds to a set of XML facts.

<?xml version="1.0" encoding="UTF-8" ?>
<Suspicious_region Region_length="287" Number_of_regions="6">
<Patient Patient_age="60" >
<Age_class Age_class_name="Between 60 and 69 years old" />
</Patient>
<Lesion_type Lesion_type_name="calcification type round_and_regular distribution n/a">
<Lesion_category Lesion_category_name="calcification type round_and_regular" />
</Lesion_type>
<Assessment Assessment_code="2" />
<Subtlety Subtlety_code="4" />
<Pathology Pathology_name="benign_without_callback" />
<Date_of_study Date="1998-06-04">
<Day Day_name="June 4, 1998">
<Month Month_name="June, 1998">
<Year Year_name="1998" />
</Month>
</Day>
</Date_of_study>
<Date_of_digitization Date="1998-07-20">
<Day Day_name="July 20, 1998">
<Month Month_name="July, 1998">
<Year Year_name="1998" />
</Month>
</Day>
</Date_of_digitization>
<Digitizer Digitizer_name="lumisys laser" />
<Scanner_image Scanner_file_name="B_3162_1.RIGHT_CC.LJPEG" />
</Suspicious_region>

Fig. 3. An example of an XML fact

4.3 Attribute trees

The concept of Attribute trees was first introduced in [2] by Golfarelli et al.. An
attribute tree is a directed, acyclic and weakly connected graph that represents
a warehouse schema. In [3], Golfarelli and Rizzi have also proposed a general
framework for data warehouses design. They developed a data warehouse model
called Dimensional Fact Model. This model is obtained by a semi-automated
technique that starts from the E/R schemas and from the logical schemas de-
scribing it. A Dimensional Fact Model is represented by an attribute tree on
which it is possible to apply algorithms in order to transform it.

Lesion_category_name

Assessment_code Lesion_type_name

Date_of c

digitization
Month_name

Suspicious_region

Day_name Year_name

Subtlety_code o\

Pathology_name O—

Region_length
Number_of_regions

Month_name

Year_name

Day_name

Scanner_file_name

Patient_age
Date_of_study

Digitizer_name

Age_class_name

Fig. 4. Attribute tree associated to the “Suspicious Region” data cube

In order to handel data warehouses and to be able to transform their schemas,
we also represent their logical model via attribute trees. For example, Figure 4
shows the attribute tree associated to the multidimensional model of the “Sus-
picious Region” data cube presented in Figure 2.

5 Building XML Cubes

Recall that our approach starts from a reference MCM corresponding to fu-
ture analysis objectives. The reference MCM will be matched with complex
data presented in XML documents. In order to make them comparable, both
MCM and XML documents are transformed to attribute trees. As explained in
Subsection 5.1, the comparison of attribute trees is realized by fusion opera-
tions according to pruning, and grafting functions [3]. Nevertheless, an XML
document which does not contains sufficient information about defined analysis
objectives is naturally rejected from the final warehouse. Thus, we introduce in
Subsection 5.2 the notion of Minimal XML document content.

5.1 Fusion of attribute trees

The pruning and the grafting functions provide from two input attribute trees
a merged attribute tree which contains the maximum of common attributes by
respect to their relative relationships.

The fusion by pruning is carried out by dropping any uncommon subtree
starting from the root vertex. The attributes dropped are not included in the
merged tree. For example, in Figure 5(a), only common vertexes (black circles)
in the two input trees are kept in the resulting tree. All other uncommon vertexes
(white circles) are therefore dropped with their subtrees.

The fusion by grafting is used when common subtrees do not have a same
structure of relationships in two input trees. In this case we need to pick up com-
mon attributes by preserving their general relationships. When an uncommon
vertex is dropped, the grafting function checks wether its descendants contain

common vertex or not. The common descendants are therefore preserved in
the merged tree. For example, in Figure 5(b), uncommon vertexes x and y are
dropped, but since their respective descendants (d, e and b) are common, they
are kept in the merged tree.

(a) Fusion by pruning (b) Fusion by grafting

a a a a
b 9 b c < y b €

+ =
= d X d b d
@ d e e

Fig. 5. Examples of fusion of two attribute trees by (a) pruning and by (b) grafting

5.2 Minimal XML document content
In some cases, when an input XML document does not contain enough informa-

tion required by the analysis objectives, the fusion provides a poor output XML
document, which represents an OLAP fact with missing data. It is naturally
useless to feed the warehouse with such a document. In order to check wether an
input XML document contains enough information to feed the warehouse or not,
we introduce the Minimal XML document content. The minimal XML document
content is an information threshold entirely defined by users when submitting
the MCM to express analysis objectives. At this stage, a user can declare for each
measure, dimension, and dimension hierarchy wether it is mandatory or optional
according to his objectives and to the information he needs to see in the final
XML Cube. The minimal XML document content corresponds to the attribute
tree associated to mandatory elements declared by the user when submitting the
data cube model.

Recall that our approach aims at building a data cube with XML sources
that allows future OLAP analysis. It is naturally not possible to decide with an
automatic process which element in a future analysis context may be optional or
not. It is entirely up to the user to define the minimal XML document content.
Nevertheless, by default, we suppose that all measures and dimensions attributes
of a submitted data cube model are mandatory in the final XML Cube. We also
suppose that not all measures can be optional elements in the data cube. Indeed,
in an analysis context, OLAP facts without a measure could not be exploited by
OLAP operators such as aggregation. For this, users are not allowed to set all
the measures to optional elements. At least one measure in the submitted data
cube model must be mandatory.

At the fusion step, the attribute tree of an input XML document is controlled.
If it contains all mandatory elements required by the user, it will be merged with
the attribute tree of the data cube model. Else, it will be rejected, the fusion
process will be canceled, and therefore no output document will be created.

6 Implementation

The core programm of the X-Warehousing application is developed with Java
and runs on all Java-enabled platforms (Figure 6(b)). The application contains
two main modules: the Model Loader Module and the Model Merger Module.

£ EDXMLEditeur C:\Documents and SettingshEtu'Bureau'Prs =10 5‘
2o Modéle Données Automatiser Aide
=is XML
] =
£% Document sale -
28 9 1 store
- ¢ __________ e [satesttansa :
1 f @ [saepistict b
I—.) e
| Attribute Tree Builder I [_ Noweaw | [state |
' . g2 [salebististi
0 ¢ ¢ : 33 Ajout Fait ¢ Clciy
38
. o} @ D county
- Ajout Element
XSD I [Attribute Tree AttributeTree| 2 SRS [state
Model : Model Document | 1 Ajout Attribut [countie
i
\ Y emo
i '
Manualinput 1 . [v Schema Minimal [swrete
'
i e Addrass
' | Attribute Trees Merger I . g ST % -
' o,
i 52
1 ¢ 0 =3 9 Produt =
] ' = o
0 XML Cube Document Builder g
1 (XML Schema) T = Eventiucue-0] EDXMLEditeur - Eneur dans | du nom du fichier modél 2]
! " 0] EDXMLEdite
L 0] EDXMLEditeu [
e e 5
v

(a) (b)

Fig. 6. (a) Architecture (b) Interface of the X-Warehousing application

6.1 Model Loader Module

A reference data cube model can be submitted by a manual input or by loading
an XSD file associated to a MCM. In the case of a manual submission, the
loader module transforms the data cube model to an XML Schema and then
to an attribute tree. The attribute tree is saved into an XSD file, which will be
displayed within a hierarchical tree (Figure 6(b)) via a JTree Object. If a user
loads an XSD file, an algorithm parses it and feeds an internal attribute tree
object structure. We consider each XSD file as a JDOM document type. Then,
we use the JDOM API to scan the document and build attribute trees. On the
other hand, the Model Loader Module loads input XML documents containing
data and their underlying structure. It also extracts the XSD file and the attribute
tree corresponding to an input XML document.

6.2 Model Merger Module

Once a data cube reference model and input XML documents are loaded, the
Model Merger Module can run according to an automatic or a manual mode.
The two modes use the same core algorithms. Nevertheless, the automatic mode
picks up XML documents from a specified directory, validates them against the
reference model and saves them in an XML repository automatically within a

looping mode. The Model Merger Module works with the help of fusion functions
presented in Section 5. Figure 7 shows function MergeTree which merges two
attribute trees. This function goes through each branch of the tree, reads the
tree of the data cube model and the tree of an input XML document and feeds
a new XML document with the resulted model structure. When a vertex from
the reference tree does not match with the document tree, MergeTree sets the
arc value to zero. Then, it re-writes the tree with only non-null arcs.

Function MergeTree(treel,tree2)
tree3=DuplicateTree(treel)
While Not(end(nodeList(tree3)))
vertex]1=GetVertex(tree3)
While Not(end(nodeList(tree2)))
vertex2=GetVertex(tree2)
If vertex2=vertexl Then vertexl.arc = 0
End While
End While
Tree3=WriteTree(tree3)

End Function

Fig. 7. The function MergeTree

7 A case study

We run our X-Warehousing approach on a real world application domain. We
consider the screening mammography data cube presented in Figure 2 as a ref-
erence MCM. We use a collection of 4 686 XML documents as input data to be
warehoused 3. All these documents have the same structure and are valid against
the same XML Schema. Therefore they have the same attribute tree. Figure 8
shows the attribute tree associated to these input XML documents. Once the
reference MCM and the input XML documents are submitted, our application
achieve the fusion of attribute trees displayed in Figures 8 and 4. The result of
this step closely depends on the minimal XML document content defined at the
submission of the reference MCM.

For example, let set to mandatory all the dimensions and all the measures
of the reference model. In this case, all the input XML documents will be re-
jected and no output will be obtained. In fact, note that the Assessment_code
attribute is absent in the attribute tree of input XML documents. Therefore, as
this attribute is mandatory in the reference model, the Attribute Tree Merger
will reject each XML document that does not include it.

Suppose now that we define a more flexible minimal XML document content
by setting Assessment dimension to optional. In this case, the absence of the
Assessment_code attribute in input XML document would not prevent the fusion
step of attribute trees. Therefore, the Model Merger Module provides a logical
model of an XML Cube represented by the XML schema of Figure 9. Further,
for each input document, an XML fact (XML document) is generated.

3 The collection of XML documents is available at:
http://eric.univ-lyon2.fr/~rbenmessaoud/?page=donnees§ion=3

Lesion_type_id Lesion_category_name

Rlizenais Lesion_type_name
Starting_column
Subtlety_name Starting_row

Suspicious_region

Pathology_code Region_length
LA/TLA
Number_of_regions

Overlay_file_url
Month_name
Patient_age

Day_name Year_name

Boundary_chain_code

Pathologie_id Scanner_file_name

Month_name

Year_name Day_name

Date_of study
Film_type_name
Date_of di

Patient_id
Film_type_id Patient_type

Age_class_name

Fig. 8. Attribute tree of input XML documents

Note that, in this case study, as all the input XML documents have the same
structure, all the generated XML facts are valid against the same XML Cube of
Figure 9. Note also that uncommon attributes in attribute trees of Figures 8 and
4 are pruned by the Attribute Trees Merger component of our application. For
instance, the attributes Lesion_type_id, Boundary_chain_code, and Patient_id are
dropped, and therefore do not exist in the XML Cube.

Finally, through this case study, we prove the capability of our approach
to use XML both to design and to store complex data according to a multidi-
mensional structure that reflects analysis objectives required by users. XML can
therefore be considered as a logical and physical description platform for future
analysis tasks on complex data.

8 Conclusion and future work

In this paper, we proposed a methodology entirely based on the XML formal-
ism to warehouse complex data. Our approach, called X-Warehousing, does not
simply feed a repository with XML documents, but also expresses an interest-
ing abstraction level by preparing XML documents to future analysis. In fact,
it consists in validating documents against an XML Schema which designs a
data warehouse. We defined a general formalization for modelling star and snow
flake schemas within XML. We also use the concept of attribute trees [2] in or-
der to help the creation and the warehousing of homogeneous XML documents
by merging initial XML sources with a reference multidimensional model. Con-
straints on the created XML documents can be required and expressed by users.
To validate our X-Warehousing approach, we implemented a Java application
which loads in input a reference multidimensional model and XML documents.
It provides a logical and a physical model of an XML cube composed of homo-
geneous XML documents where each document corresponds to an OLAP fact

that respects data required constraints. A case study on breast cancer domain
is provided to show the interest of employing our approach in a real world field
for designing and warehousing complex data by using XML.

For future work, a lot of issues need to be addressed to our X- Warehousing
approach. The first is devoted to a performance study of OLAP queries in order
to achieve analysis on XML documents as provided in the XML Cube of our
present approach. The second issue should deal with experimental tests on the
reliability of the developed application. This includes studies on complexity and
time processing of loading input XML documents, building attribute trees, fusion
of attribute trees, and creation of output XML documents. Third, we should solve
the problem of updating the XML Cube when we need to modify the reference
MCM in order to change analysis objectives. Finally, some optimization are also
needed on the Model Loader Module architecture. For instance, when we submit a
collection of XML documents having the same structure, the application does not
need to generate an XML Schema and an attribute tree for each input document.

References

1. Kimball, R.: The Data Warehouse Toolkit. John Wiley & Sons (1996)

2. Golfarelli, M., Maio, D., Rizzi, S.: Conceptual Design of Data Warehouses from
E/R Schema. In: HICSS’98: Proceedings of the Thirty-First Annual Hawaii Inter-
national Conference on System Sciences-Volume 7, IEEE Computer Society (1998)
334

3. Golfarelli, M., Rizzi, S.: Designing the data warehouse: key steps and crucial issues.
Journal of Computer Science and Information Management 2(3) (1999) 88-100

4. Krill, P.: XML builds momentun as repository standard. InfoWorld 20(25) (1998)
6

5. Baril, X., Bellahsene, Z.: Designing and Managing an XML Warehouse. In: XML
Data Management: Native XML and XML-Enabled Database Systems. First edn.
Addison Wesley Professional (2003) 455-474

6. Hiimmer, W., Bauer, A., Harde, G.: XCube: XML for data warehouses. In:
DOLAP, ACM (2003) 33-40

7. Pokorny, J.: Modelling stars using XML. In: DOLAP’01: Proceedings of the 4th
ACM international workshop on Data warehousing and OLAP, Atlanta, Georgia,
USA, ACM Press (2001) 24-31

8. Golfarelli, M., Rizzi, S., Vrdoljak, B.: Data Warehouse Design from XML Sources.
In: DOLAP’01: Proceedings of the 4th ACM international workshop on Data ware-
housing and OLAP, Atlanta, Georgia, USA (2001)

9. Trujillo, J., Lujan-Mora, S., Song, I.Y.: Applying UML and XML for Designing and
Interchanging Information for Data Warehouses and OLAP Applications. Journal
of Database Management 15(1) (2004) 41-72

10. Nassis, V., Rajugan, R., Dillon, T.S., Rahayu, J.W.: Conceptual Design of XML
Document Warehouses. In Kambayashi, Y., Mohania, M.K., W&, W., eds.:
DaWaK. Volume 3181 of Lecture Notes in Computer Science., Springer (2004)
1-14

11. Heath, M., Bowyer, K., Kopans, D., Moore, R., Jr, P.K.: The Digital Database for
Screening Mammography. In: The Proceedings of the 5th International Workshop
on Digital Mammography, Toronto, Canada, Medical Physics Publishing (Madison,
WI) (2000)

<?xml version="1.0" encoding="UTF-8" 7>
<xs:schema xmlIns="http://www.w3schools.com” >

<xs:element name=""Suspicious_region” >
<xs:complexType>
<xs:sequence>
<xs:element name=""Patient” type="Patient_Type" />
<xs:element name="Lesion_Type" type="Lesion_Type_Type" />
<xs:element name="Subtlety” type="Subtlety_Type" />
<xs:element name=""Pathology” type=""Pathology_Type" />
<xs:element name="Date_of_study” type="Date_Type" />
<xs:element name="Date_of_digitization” type="Date_Type" />
<xs:element name="Digitizer" type="Digitizer_Type” />
<xs:element name="Scanner_image" type="Scanner_Type" />
< /xs:sequence>
<xs:attribute name="Region_length” type="xs:integer” />
<xs:attribute name="Number_of_regions” type="xs:integer’ />
< /xs:complexType>
< /xs:element>

<xs:complexType name="Patient_Type" >
<xs:sequence>
<xs:element name="Age_class" >
<xs:complexType>
<xs:attribute name="Age_class_name” type="xs:string” />
< /xs:complexType>
< /xs:element>
< /xs:sequence>
<xs:attribute name="Patient_age” type="xs:integer” />
< /xs:complexType>

<xs:complexType name=""Lesion_Type_Type" >
<xs:sequence>
<xs:element name="Lesion_category” >
<xs:complexType>
<xs:attribute name=""Lesion_category_name” type="xs:string” />
< /xs:complexType>
< /xs:element>
< /xs:sequence>
<xs:attribute name=""Lesion_type_.name” type="xs:string" />
< /xs:complexType>

<xs:complexType name="=Subtlety_Type" >
<xs:attribute name="Subtlety_code” type="xs:integer" />
< /xs:complexType>

<xs:complexType name=""Pathology_Type" >
<xs:attribute name="Pathology_name” type="xs:string" />
< /xs:complexType>

<xs:complexType name="Date_Type" >
<xs:sequence>
<xs:element name="Day" >
<xs:complexType>
<Xs:sequence>
<xs:element name="Month" >
<xs:complexType>
<xs:sequence>
<xs:element name=""Year" >
<xs:complexType>
<xs:attribute name="Year_name" type="xs:integer”’ />
< /xs:complexType>
< /xs:element>
< /xs:sequence>
<xs:attribute name="Month_name” type="xs:string" />
< /xs:complexType>
< /xs:element>
< /xs:sequence>
<xs:attribute name="Day_name”" type="xs:string” />
< /xs:complexType>
< /xs:element>
< /xs:sequence>
<xs:attribute name="Date” type="xs:date” />
< /xs:complexType>

<xs:complexType name="Scanner_Type" >
<xs:attribute name="Scanner_file_name” type="xs:string” />
< /xs:complexType>

< /xs:schema>

Fig. 9. Logical model of the “Suspicious Region” XML Cube

